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We introduce a model for information spreading among a population of N agents diffusing on a square
L�L lattice, starting from an informed agent �Source�. Information passing from informed to unaware agents
occurs whenever the relative distance is �1. Numerical simulations show that the time required for the
information to reach all agents scales as N−�L�, where � and � are noninteger. A decay factor z takes into
account the degeneration of information as it passes from one agent to another; the final average degree of
information of the population Iav�z� is thus history dependent. We find that the behavior of Iav�z� is nonmono-
tonic with respect to N and L and displays a set of minima. Part of the results are recovered with analytical
approximations.
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I. INTRODUCTION

The information spreading in a population constitutes an
attracting problem due to the emerging complex behavior
and to the great number of applications �1–4�. The propaga-
tion of information can be seen as a sequence of interper-
sonal processes between the interacting agents making up the
system. In general, the population can be represented by a
graph where agents are nodes and links between them exist
whenever they interact with each other.

Authors, who previously investigated the diffusion of in-
formation according to such a model, introduced different
kinds of interpersonal interaction, but almost all of them as-
sumed a static society �4–6� �a notable exception being that
of Eubank et al. �7��. In fact, networks are usually built ac-
cording to a priori rules, which means that agents are fixed
at their positions and can only interact with their �predeter-
mined� set of neighbors �the flow of information between
two agents is permanently open for linked pairs of agents
and permanently closed for nonlinked pairs�.

On the other hand, real systems are far from being static:
nowadays individuals are really dynamic and continuously
come in contact, and lose contact, with other people. Hence,
the interactions are rather instantaneous and time dependent,
and thus should be considered the links of the pertaining
graph. The network should be thought of as continuously
evolving, adapting to the new interpersonal circumstances.

Indeed, in sociology, where information spreading
throughout a population is a long-standing problem �8�, it is
widely accepted that processes of information transmission
are far from deterministic. Rather, they should incorporate
some stochastic elements arising, for example, from “chance
encounters with informed individuals” �9�.

Sociologists also underline that, irrespective of the kind of
object to be transmitted, a realistic model should take into
account whether the object passed from one agent to another
is modified during the process �10�. In particular, informa-
tion, which spreads by replication rather than transference, is
continuously revised while flowing throughout the network.
Degradation during transmission processes could reveal im-
portant qualitative and quantitative effects, as some recent
works �11,12� started to point out.

This paper introduces a model that takes into account both
the issues discussed above, namely, a mobile society and
information changing during transmission. The model is
based on a set of random walkers meant as “diffusing indi-
viduals”: a population of N interacting agents embedded on a
finite space is represented by N random walkers diffusing on
a square L�L lattice. We assume that two or more of them
can interact if they are sufficiently close to each other: as a
result, a given agent has no fixed position or neighbors, but
the set of agents it can interact with is updated at each in-
stant.

The information carried by an agent is a real �i.e., not
boolean� variable, whose value lies between 0 and 1. This
�together with the diffusive dynamics� is the main point that
differentiates our model from the susceptible-infected con-
tact model of virus spreading in epidemiological literature
�13�, where only two statuses—susceptible and infected—are
available to an agent. The issue of information changing is
dealt with by introducing a decay constant z�1, which mea-
sures the corruption experienced by the piece of information
when passing from an agent to another. We assume z to be
universal: the more passages the information has undergone
before reaching an individual, the more altered it is with
respect to its original form.

We study the time it takes for the piece of information to
reach every agent �Population-Awareness Time�. We show
that it depends on N and L as a power-law, whose exponents
are constant with respect to system parameters. We also in-
vestigate the final average �per agent� degree of information
Iav�z�. We show that Iav�z� is not a monotonic function of
the density �= N

L2 , but displays minima for definite values of
N, L. This interesting result implies that there does not exist
a trivial direction in which to tune the system parameters N
and L in order to make information spreading more efficient.

In the following, we first describe our model �Sec. II�, and
we then expose results obtained by means of numerical
simulations �Sec. III�. Next, Sec. IV contains analytical re-
sults that corroborate and highlight the former. Finally, Sec.
V is devoted to our conclusions and perspectives.
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II. THE MODEL

N random walkers �henceforth, agents� move on a square
L�L lattice with periodic boundary condition. At time t=0
the agents are randomly distributed on the lattice. At each
instant t�0 each agent jumps randomly to one of the four
nearest-neighbor sites. There are no excluded-volume ef-
fects: there can be more agents on the same site; �=N /L2 is
the density of agents on the lattice.

Each agent j carries a number Ij, 0� Ij �1, representing
information; an agent is called “informed” if Ij �0 and “un-
aware” if Ij =0. At t=0 one agent, say agent 1, carries infor-
mation 1 and is called the Information Source �or simply the
Source�; the other N−1 agents are unaware. The aim of the
dynamics is to diffuse information from the Source to all
agents.

Interaction between two agents j and k takes place when
�i� one of them is informed and the other unaware, and �ii�
the chemical distance between the two agents is �1 �i.e.,
they are either on the same site or on nearest-neighbor sites:
we then say that they are “in contact”�. By “interaction” we
mean an information passing from the informed agent, say j,
to the unaware one k with a fixed decay constant z �0�z
�1�: if j carries information Ij, then k becomes informed
with information Ik=z · Ii. Once an agent has become in-
formed, it will never change nor lose its information �that is,
informed agents never interact�. If an unaware agent comes
in contact with more informed agents at the same time, each
carrying its own information Ij, it will acquire the informa-
tion of one of them chosen at random �multiplied by z�. The
simulation stops at the time � when all the agents have be-
come informed: we call this the Population-Awareness Time
�PAT�.

We define n�t� the total number of informed agents at time
t �n�0�=1; n���=N�. As a result of our model, the informa-
tion carried by an agent is always a power of the decay
constant zl, where l is the number of passages from the In-
formation Source to the agent. We say that an informed agent

belongs to level l when it has received information after l
passages from the Information Source. We call n�l , t� the
number of agents belonging to the lth level at time t, or the
population of level l at time t: n�t�=�l=0

t n�l , t�. In Fig. 1 we
show as an example the evolution of N=8 agents on a 5
�5 lattice.

We can envisage information passing by drawing an In-
formation Tree with N nodes and N−1 links �Fig. 1�: the
agents are the nodes of the tree, and a link is drawn between
two agents when one passes information to the other. An
agent belongs to level l if its distance from the Source along
the tree is l. The Information Tree evolves with time: the tree
at instant t is a subtree of that at instant t+1.

At each instant t we define the total information

I�z,t� = �
l=0

t

n�l,t�zl; �1�

notice that it is the generating function of n�t�; consequently,

n�t� = I�1,t� .

We are interested in particular in the final information

I�z� = I�z,�� ,

and in its average value per agent, Iav�z�=I�z� /N.

III. NUMERICAL RESULTS

This section is divided into three parts. The first considers
only n�t�, the total informed population at time t, and the
results presented are independent of the population distribu-
tion on levels. The second section takes into account the
distribution on levels n�l , t�. The third section deals with the
final information I�z�. All the results are averaged over 500
different realizations of the system.

FIG. 1. Evolution of eight agents on a 5�5 lattice for t from 0 to 3. For each t the lattice is shown on the top and the Information Tree
is shown on the bottom. Informed agents are black circles; unaware agents are white circles. A gray circle of radius 1 is drawn around every
informed agent to represent its action �an agent is in contact with another if it falls within this circle�. t=0: the only informed agent is the
Information Source that carries information 1, so n�0,0�=1 and n�0, l�=0 for l�0. t=1: agent 1 passes information to agent 2; now
n�1,0�=1, n�1,1�=1. t=2: agent 1 passes information to agent 3 and agent 2 passes information to agent 4; n�2,0�=1, n�2,1�=2, n�3,1�=1.
t=3: agent 2 passes information to agent 5; agent 4 passes information to agents 6, 7, 8. Notice that agent 6 is in contact with both 3 and
4; it chooses randomly to get information from 4 �the same for agent 8�. Now all agents have been informed: for this simulation the
Population-Awareness Time is �=3. The final information is I���=�l=0

� n�l ,��zl=1+2z+2z2+3z3.
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A. Level-independent results

Figure 2 shows the typical time evolution of n�t�, the
number of aware people at time t, for fixed N and several
different values of L. Due to the fact that, once informed, an
agent cannot modify his status, n�t� is a monotonic increas-
ing function. The curve is sigmoidal: n�t� initially increases
with an increasing growth rate dn�t� /dt. The growth rate is
maximum at the Outbreak Time tout, when usually n�tout�
�N /2 �in Sec. IV we will justify this fact in a low-density
approximation�. The growth rate then begins to decrease; the
evolution slows down and the curve begins to saturate. The
information reaches all the population at the Population-
Awareness Time �, that is the quantity that we analyze here
�roughly ��2tout, and this fact as well will be justified in
Sec. IV�.

The Population-Awareness Time � depends on the total
number of agents N and on the size of the lattice L, as shown
in Fig. 3. As long as the density is not large ���1�, data
points are well fitted by power laws holding over a wide
range �though logarithmic corrections cannot be ruled out�:

� � N−�, �2�

� � L�. �3�

The exponents � and � are constant by varying L or N,
respectively, so that we can write:

� � N−�L�. �4�

The fitting of data with an asymptotic least-squares
method yields the following exponents:

� = 0.68 ± 0.01, � = 2.22 ± 0.03. �5�

B. Level-dependent results

We now focus on the time evolution of n�l , t�, the popu-
lation of level l. Each population evolves in time with a

sigmoidal law �Fig. 4�, with its own Outbreak Time and
tending to a final value n�l ,��.

The final distribution of agents on levels n�l ,�� as a func-
tion of l �Fig. 5, top� has an asymmetrical bell shape, with a
peak at position lpeak and a width 	, both depending on N
and L �notice that only a fraction of the N available levels
has a non-negligible population�. If L is large enough �larger

than L̃, see below�, the population distribution on levels is
well fitted by the three-parameter function

n�l,��
N

= A
�log N�l


�B · l + C�
, �6�

where 
�x� is the Euler gamma function, and the parameters
A ,B ,C depend smoothly on N and L. The fitting function is
a generalization of Eq. �19�, the distribution function of the
low-density regime.

FIG. 2. �Color online� Evolution of n�t� for a population of N
=32 agents on six different lattices of size L=2m, m=4, . . . ,9. Full
circles denote the Population-Awareness Times, empty circles the
Outbreak Times.

FIG. 3. �Color online� Dependence of the Population-Awareness
Time � on the number of agents N and the lattice size L. Top:
Log-log scale plot of � versus N; different lattice-size values are
shown with different symbols and colors. For sufficiently small
densities ���1�, straight lines represent the best fit according to Eq.
�4�. Bottom: Log-log scale plot of � versus L; different values of the
number of agents are shown with different symbols and colors.
Provided that the density � is not large ���1�, data points lay on
the curves given by Eq. �4�, which represent the best fit. Error on
data points is �2%.
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In Fig. 5, bottom, we show how the distribution n�l , ��
changes with L for a fixed value N=1024 and we introduce
one of the most important results of this paper. For L small
�hence for high density, ��1�, the distribution is very sharp

and peaked on small values of l. As L grows, the distribution
shifts to higher values of l and becomes more and more
spread �lpeak and 	 grow�. The extremal, maximum-spread

distribution is obtained for a value L= L̃ �for N=1024, L̃
�64�: lpeak and 	 are maximum; the highest possible number

of levels is occupied. As L is increased beyond L̃, the curve
begins to shift back to smaller l and to narrow; this process

continues up to the low-density regime ��1�. In general, L̃
depends on N.

The same phenomenon occurs if we keep L fixed and let
N vary. By increasing N from small, low-density values, the
distribution shifts to the right and spreads, up to an extremal

form occurring for N= Ñ �depending on L�. It then shifts
back and narrows.

This behavior has strong consequences on the efficiency
of information spreading on the lattice, as we will see in the
next section.

C. Degree of information

In this section we deal with the final degree of informa-
tion at the Population-Awareness Time, I�z�=I�� ,z� �in par-
ticular, with its average value Iav�z�=I�z� /N�, and its depen-
dence on N, L, and z. We recall �Eq. �1�� that I�z� is the
generating function of the final populations n�l ,��, hence, its
value depends on the final distribution of the population on
levels analyzed in the previous paragraphs.

Once z is fixed, Iav�z� depends nonmonotonically on N
and L; let us follow it for N fixed and varying L in Fig. 6. For
L small, due to the narrow distribution discussed in the pre-
vious section, the value of the information is high. When L

= L̃, the population distribution on levels reaches its extremal
form and the information displays a minimum. As L in-

FIG. 4. �Color online� Time evolution of level populations n�l , t�
for N=32, L=512.

FIG. 5. �Color online� Top: typical population distribution on
levels at t=� for a low-density system �N=1024,L=4096�. Squares
are experimental results; the line is the result of data fitting accord-
ing to Eq. �6�. Bottom: population distribution on levels at t=� for
systems with N=1024 and L between 24 and 212 �the lines are
guides to the eye�: the behavior of the distribution is nonmonotonic
with respect to L. By increasing L from small values, the curves
first shift to the right and flatten �L=16,24,32�. The rightmost,
extremal curve corresponds to L=64. Then, by increasing L the
curves shift back to the left and sharpen �L=128,512,4096�.

FIG. 6. �Color online� Semilog scale plot of final degree of
information per agent Iav�z�=I�z� /N vs lattice size L. Several val-
ues of N are shown with different symbols and colors �lines are
guides to the eye�, while the decay constant is fixed at z=0.9. No-

tice the occurrence of minima at L̃ , Ñ, and that L̃ is monotonically

increasing with respect to Ñ. Error on data points is �1.5%.
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creases, the information starts to rise again. Thus, the main
result is that, given a population number N, there is an opti-

mal lattice size L̃ for which the final information is mini-
mum; this value is typically intermediate between the high-
density and low-density regimes. The same happens having

fixed L and letting N vary: there is a minimum for N= Ñ,

where Ñ depends on L.
This result implies that choosing an optimization strategy

for the spreading of information on the lattice is not trivial.
Suppose, e.g., that we are given N agents on a lattice and we
want to maximize the final average information Iav�z� by
varying the lattice size L �starting from some L0�. This opti-
mization process is meant to be local: we are not allowed to
modify the size by several orders of magnitude, but just
around the starting size L0. Then, the choice whether to

shrink or expand the lattice depends on L0. If L0� L̃, increas-
ing L takes the system closer to the information minimum
�Iav�z� decreases�; decreasing L increases Iav�z� and is the

right strategy. If on the other hand L0� L̃, increasing L is the
right strategy.

Figure 7 shows that the depth of the information mini-
mum depends in turn on the decay constant z: as z is varied
from 0 to 1, there are some curves �corresponding to in-
between values� which display a more emphasized mini-
mum.

Finally, in Fig. 8 we show how the final average degree of
information Iav�z� depends on z, for different values of N,
once the size L is fixed. There are, as expected, two fixed
points: when z=1 �z=0�, Iav�z� is equal to 1 �0�, irrespective
of the parameters �N ,L� of the system. The function Iav�z�
cannot be determined, except in two particular regimes �low
and high density�.

When �=N /L2 is sufficiently low ���2−8�, the function
is well fitted by

Iav�z� = Nz−1, �7�

within the error ��3% �. When ��1, Iav�z� is fitted by

Iav�z� = A · z�
�1 − zB·L�2

�1 − z�2 , �8�

with A, B depending on N, L.
The two laws come from particular population distribu-

tions, as will be explained in the next section.

IV. ANALYTICAL RESULTS

Consider a system with N and L fixed. Let P�t� be the
probability that at time t an unaware agent is in contact with
at least one informed agent. Let Pl�k ,s ; t� be the probability
that at time t an unaware agent is in contact with k+s in-
formed agents, of which k belonging to level l and s belong-
ing to some other level. The evolution of the system is then
governed by two master equations, one for the total popula-
tion:

n�t + 1� = n�t� + �N − n�t��P�t� , �9�

and one for the level populations:

n�l,t + 1� = n�l,t� + �N − n�t���
k,s

Pl−1�k,s;t�
k

k + s
. �10�

P�t� and Pl�k ,s ; t� are very complex functions of their argu-
ments and cannot be calculated in the general case. For ex-
ample, P�t� depends not only on the number of informed
agents n�t� but also on their spatial distribution, hence on the
instant and the site where each of them has been informed �in
other words, on the history of the system�. We will calculate
the evolution of the system in two particular cases, for high
and low densities, and finally compare the results with inter-
mediate systems.

A. High-density regime

In this case ��→ � � there are many agents on every site.
If the agents on a site get informed at a time t, we can

FIG. 7. �Color online� Semilog scale plot of final degree of
information per agent Iav�z� as a function of the lattice size L, when
N=29 �lines are guides to the eye�. Four different values of decay
constant z are considered, as shown by the legend.

FIG. 8. �Color online� Final �t=�� degree of information per
agent Iav�z� versus the decay constant z. The size of the lattice is
fixed as L=24, while several values of N are considered and repre-
sented in different colors and symbols. The curve depicted is the
best fit when N=210 ���1�, according to Eq. �8�. Notice the exis-
tence of the fixed points z=0, Iav�z�= 1

N , and z=1,Iav�z�=1.
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suppose that at t+1 at least one of them will jump on each of
the four nearest-neighbor sites: hence, all the unaware agents
on the nearest- and next-to-nearest-neighbor sites will get
information at time t+1. In this way �Fig. 9� information
spreading among agents amounts to propagation of informa-
tion through the lattice. A “wave front” of information trav-
els with constant velocity: on the interior sites are informed
agents, on the exterior sites unaware agents. If we suppose
the Source to be at the center of the lattice at t=0, at each
instant the wave front is the locus of points whose chemical
distance from the center is 2t+1. Consequently, n�t�=��8t2

−4t+1�, up to the half-filling time tout�L /4, when the front
reaches the boundary of the lattice; for t�L /4, the equation
is n�t�=��−8t2+4t�2L+1�+ �L+1�2�. The Population-
Awareness Time is ��L /2.

Almost all the agents on the wave front at time t have
received information at time t−1; thus, each new time step
adds a new level, whose population never changes at succes-
sive times. The population n�l , t� is proportional to the length
of the wave front at the time t= l: n�l , t��4��4l+1� up to t
=L /4 and n�l , t��4��−4l+2L−1� up to t=L /2. As can be
seen from Fig. 9, the shape of the level distribution at t=� is
triangular �compare this to the distribution for L=16 in Fig.
5�. The Final Information is proportional to �, according to
the formula

I�z� = �
l=0

N

n�l,��zl � �
l=0

L/4

16�lzl + �
l=L/4+1

�

4��2L − 4l�zl

= 16z�
�1 − zL/4�2

�1 − z�2 . �11�

A modified version of this equation �Eq. �8�� has been
used to fit the information curves for high-density regimes.

B. Low-density regime

In the case of low density ��1� the time an informed
agent walks before meeting an unaware agent becomes very
large. We can then assume that the agents between each
event have the time to redistribute randomly on the lattice,
that is, we adopt a mean-field approximation. Let p=5/L2 be
the probability that two given agents, randomly positioned
on the lattice, are in contact �5 is the number of points con-
tained in a circle of radius 1�. Hence, �1− p�n�t� is the prob-

ability for an agent at time t of not being in contact with any
of the n�t� informed agents, and P�t�=1− �1− p�n�t� is the
probability of being in contact with at least one informed
agent. Master equation �9� becomes

n�t + 1� = n�t� + �N − n�t���1 − �1 − p�n�t�� ,

and to first order in p:

n�t + 1� = n�t� + p�N − n�t��n�t� . �12�

Thus, n�t+1�= f(n�t�): f is a logistic-like map, with a re-
pelling fixed point in 0 �f��0�=1+Np�, and an attracting
fixed point in N �f��N�=1−Np�. Since Np=5�1, the in-
crement of n�t� at each time step is very small �of order p�,
and we can take the evolution to be continuous. The equation
becomes

n�t + 1� − n�t� �
dn�t�

dt
= p�N − n�t��n�t� �13�

and the solution, with the initial condition n�0�=1, is the
sigmoidal function

n�t� = N
eNpt

eNpt + N − 1
. �14�

The outbreak time, i.e., the flex of the curve, is in tout

=
log�N−1�

Np , which is also the half-filling time, n�tout�=N /2.
The total population N is reached only for t=�, but we can
take the PAT to be the time when N−1 agents have been
informed:

� =
2 log�N − 1�

Np
�

2 logN

Np
�

logN

N
L2, �15�

where the last result holds for N large: hence, in the low-
density approximation the exponent for L is �=2, while the
law for N contains logarithmic corrections and the exponent
� cannot be defined. The first result in Eq. �15� shows that in
this approximation �=2tout.

The quantity Pl�k ,s ; t� in Eq. �10� is

FIG. 9. �Color online� Evolution of the sys-
tem in the high-density approximation for a lat-
tice with L=12 and a Source starting in the site
with coordinates �7,7�. Left: the wave front of
information on the lattice at times t=1, 2, 3, 4 has
a square shape. Agents in the interior of the
square are informed, agents on the exterior are
unaware. Times correspond to levels: agents be-
tween the front at time 3 and that at time 4 belong
to level 4, and so on. Right: final distribution of
agents on levels; broken lines highlight the trian-
gular shape of the distribution.
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Pl�k,s;t� = �n�l,t�
k

��n�t� − n�l,t�
s

�
�pk+s�1 − p�n�t�−�k+s�.

The sum over k and s in Eq. �10�, using the Chu-
Vandermonde identity for binomial coefficients �14�, yields a
master equation for the level populations in the mean-field
approximation:

n�l,t + 1� = n�l,t� + �N − n�t���1 − �1 − p�n�t��
n�l − 1,t�

n�t�
,

and to first order in p:

n�l,t + 1� = n�l,t� + pn�l − 1,t��N − n�t�� .

Its continuous version is

dn�l,t�
dt

= pn�l − 1,t��N − n�t�� �16�

that has to be solved for each l. For l=1, with the initial
condition n�1,0�=0, we get the solution

n�1,t� = Npt − log�eNpt + N − 1� + logN = log„n�t�… .

We then plug this solution into Eq. �16� to get n�2, t�, and so
on. It can be shown by induction that for every l, with the
initial condition n�l , t�=0,

n�l,t� =
1

l!
�Npt − log�eNpt + N − 1� + log N�l

=
1

l!
�n�1,t��l =

1

l!
�log„n�t�…�l. �17�

This set of curves �not shown here� is similar to that of Fig.
4, with crossovers and different Outbreak Times.

The normalized level population at each t is

n�l,t�
n�t�

=
1

n�t�
1

l!
�log„n�t�…�l =

e−log�n�t���log„n�t�…�l

l!
, �18�

hence, it is a Poisson distribution with mean log�n�t��.
The population distribution on levels at t=� is

n�l,�� =
�logN�l

l!
, �19�

independent of p �hence of L�. A modified version of this
distribution �Eq. �6�� has been used to fit the numerical
curves.

The total information is

I�t,z� = �
l=0

N

n�l,t�zl = �
l=0

N
1

l!
�log„n�t�… · z�l

� elog„n�t�…·z = n�t�z. �20�

In particular, I�� ,z�=Nz, in agreement with Eq. �7�.

In conclusion, we have examined the system in two dif-
ferent regimes, both optimal for information spreading. The

worst case for information spreading, at L̃, seems to corre-
spond to crossover between these two regimes, as shown in
Fig. 10.

V. CONCLUSIONS AND PERSPECTIVES

We have presented a model of information spreading
among diffusing agents. The model takes into account a
population made up of agents who are socially, as well as
geographically, dynamic. Moreover, it allows for possible al-
teration of information occurring during the transmission
process, by introducing a decay constant z.

Investigations are lead both by means of numerical simu-
lations and of analytical methods valid in the high- and low-
density regimes.

The main results are two. First: the time it takes the piece
of information to reach the whole population of N agents,
distributed on a lattice sized L, depends on N and L accord-
ing to a power law. This behavior holds over a wide range,
where exponents are found to be constant and noninteger.
Second: the final �t=�� average degree of information Iav�z�
for a fixed population N �lattice size L� shows a surprisingly
nonmonotonic dependence on the lattice size L �on the popu-
lation N�, with the occurrence of a minimum. This means
that, from an applied perspective, an optimization strategy
for Iav�z� is possible with respect to N and L.

Extensions of our model to networks embedded in topo-
logically different spaces are under study.

FIG. 10. Snapshots of four systems with N=1024 and L=16, 32,
64, 512, all at an instant near to the half-filling time. Only informed
agents are shown; they are represented as circles of radius 1. Notice
that the high-density picture of a connected set of informed agents

holds up to L= L̃=64. For L�64, the picture breaks down and the
system is better described by a low-density approximation �L
=512�.
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